CNP-101 Prevents Gluten Challenge Induced Immune Activation in Adults with Celiac Disease

Kelly C1,2, Murray J3, Leffler D4, Bledsoe A3, Smithson G4, Podojil J5, First R5, Morris A5, Boyne M5, Elhofy A5, Wu T3 and Miller S5,6

1Beth Israel Deaconess Medical Center, Boston, MA, USA
2Harvard Medical School, Boston, MA, USA
3Mayo Clinic, Rochester, MN, USA
4Takeda Pharmaceuticals International Co., Cambridge, MA, USA
5COUR Pharmaceuticals Development Co., Inc., Northbrook, IL, USA
6Feinberg School of Medicine, Chicago, IL, USA
Phase 2a CNP-101 Proof-of-Concept study schematic

Study subjects: Well-controlled CeD

Day

-45 1 8 15 20 29 35

Screen 14-day GC

CNP-101 8 mg/kg or placebo infusions

Duodenal biopsy

Day 6 of GC

Day 14 of GC

Study subjects:
Well-controlled CeD

CeD, celiac disease; CNP, Cour Nanoparticle Platform; ELISpot, enzyme-linked immunospot; GC, Gluten Challenge; IEL, intraepithelial lymphocytes; IFN, interferon; PBMC, peripheral blood mononuclear cell; Vh: Cd, villus height to crypt depth ratio

Safety assessments

Duodenal histology Vh: Cd and IELs

CeD signs and symptoms

IFN-γ ELISpot – Gliadin reactive T cells

CeD, celiac disease; CNP, Cour Nanoparticle Platform; ELISpot, enzyme-linked immunospot; GC, Gluten Challenge; IEL, intraepithelial lymphocytes; IFN, interferon; PBMC, peripheral blood mononuclear cell; Vh: Cd, villus height to crypt depth ratio
CNP-101 was safe and well tolerated: results of Phase 2a studies

- No serious adverse events (SAEs)
- No clinically significant changes in vital signs, routine clinical laboratory results, liver function tests (LFTs), serum cytokines/chemokines and T cell proliferation
- Complement levels transiently raised in all patients, not associated with adverse events (AEs)
- Most AEs were mild and transient

<table>
<thead>
<tr>
<th>Phase 2a</th>
<th>CNP-101</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>81%</td>
<td>72%</td>
</tr>
<tr>
<td>Abdomen distention</td>
<td>56%</td>
<td>61%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Headache</td>
<td>44%</td>
<td>17%</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>38%</td>
<td>28%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>31%</td>
<td>33%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>33%</td>
<td>50%</td>
</tr>
<tr>
<td>Back pain</td>
<td>31%</td>
<td>0%</td>
</tr>
</tbody>
</table>

AE, adverse event; CNP, Cour Nanoparticle Platform; LFT, liver function test; SAE, serious adverse event
CNP-101 met primary efficacy objective: reduced IFN-γ spot forming units response to gluten challenge

- IFN-γ spot forming units (SFUs) on enzyme-linked immunospot (ELISpot) correspond to gliadin-responsive T cells activated by gluten challenge (GC)
- The placebo group showed the expected, highly significant, increase in IFN-γ SFU during GC
- This GC-induced gliadin-dependant T cell response was substantially reduced by CNP-101 pre-treatment

Primary study objective:
To compare the increase from baseline in IFN-γ SFUs in a gliadin-specific ELISpot assay after an oral GC among patients treated with CNP-101 or placebo

Baseline denotes Day 15 (or Day 1, if Day 15 sample inadequate)
~ One data point omitted for clarity SFU = 100
CNP, Cour Nanoparticle Platform; ELISpot, enzyme-linked immunospot; GC, gluten challenge; IFN, interferon; SFU, spot forming units
CNP-101 pre-treatment effects on duodenal villus height to crypt depth ratio after GC

- Placebo group showed the expected, significant reduction in villus height to crypt depth ratio (Vh:Cd) during GC
- CNP-101 pre-treatment was associated with a reduced GC-induced Vh:Cd deterioration

Secondary study objective:
To compare the change from baseline in the Vh:Cd following an oral GC in subjects treated with CNP-101 or placebo

CNP, Cour Nanoparticle Platform; GC, gluten challenge; Vh:Cd, villus height to crypt depth ratio
CNP-101 pre-treatment reduces gut-homing α4β7 effector memory CD4+ and effector memory CD8+ circulating T cells during GC

- When compared to placebo, CNP-101 pre-treatment significantly reduced the circulation of activated α4β7 effector memory (EM) CD4+ and EM CD8+ T cells during GC.
- These activated α4β7 EM CD4+ and EM CD8+ T cells are gut homing and normally circulate to the intestine and participate in GC-induced intestinal inflammation.
CNP-101 gliadin nanoparticles are a novel approach to inducing tolerance to gluten in CeD

CNP-101 infusion met the primary study objective of preventing the expected activation of IFN-γ-producing gliadin-specific cells during GC

CNP-101 pre-treatment was associated with a trend towards a reduction in GC-induced Vh: Cd deterioration

CNP-101 gliadin nanoparticles also reduced circulating, gut-homing, EM CD4+ and EM CD8+ T cells during GC

To our knowledge, this is the first clinical trial to demonstrate induction of antigen specific immune tolerance in any autoimmune disease.